论文标题
能源需求数据的图表学习数据:在排放限制下应用于关节能源系统计划
Graph Representation Learning for Energy Demand Data: Application to Joint Energy System Planning under Emissions Constraints
论文作者
论文摘要
当前的电力和天然气(NG)基础设施的快速转化必须达到中世纪的二氧化碳排放量减少目标。这需要在代表性的需求和供应模式,运营限制和政策注意事项下对联合Power-NG系统进行长期计划。我们的工作是由与解决Power-NG系统联合计划的生成和传输扩展问题(GTEP)相关的计算和实际挑战所激发的。具体而言,我们专注于从相应网络中有效从功率和NG数据中提取一组代表日,并使用此组来减少解决GTEP所需的计算负担。我们为多个时间分辨率的能源系统(游戏)提出了一个图形自动编码器,以捕获相互依存网络中的时空需求模式,并说明可用数据的时间分辨率的差异。所得的嵌入在聚类算法中用于选择代表日。我们评估了方法在解决新英格兰联合Power-NG系统校准的GTEP公式方面的有效性。该公式说明了功率和NG系统之间的物理相互依赖性,包括关节排放约束。我们的结果表明,从游戏获得的一组代表日不仅使我们能够仔细解决GTEP公式,而且还可以实现实施联合计划决策的较低成本。
A rapid transformation of current electric power and natural gas (NG) infrastructure is imperative to meet the mid-century goal of CO2 emissions reduction requires. This necessitates a long-term planning of the joint power-NG system under representative demand and supply patterns, operational constraints, and policy considerations. Our work is motivated by the computational and practical challenges associated with solving the generation and transmission expansion problem (GTEP) for joint planning of power-NG systems. Specifically, we focus on efficiently extracting a set of representative days from power and NG data in respective networks and using this set to reduce the computational burden required to solve the GTEP. We propose a Graph Autoencoder for Multiple time resolution Energy Systems (GAMES) to capture the spatio-temporal demand patterns in interdependent networks and account for differences in the temporal resolution of available data. The resulting embeddings are used in a clustering algorithm to select representative days. We evaluate the effectiveness of our approach in solving a GTEP formulation calibrated for the joint power-NG system in New England. This formulation accounts for the physical interdependencies between power and NG systems, including the joint emissions constraint. Our results show that the set of representative days obtained from GAMES not only allows us to tractably solve the GTEP formulation, but also achieves a lower cost of implementing the joint planning decisions.