论文标题

宽区域地理定位具有有限的视野相机

Wide-Area Geolocalization with a Limited Field of View Camera

论文作者

Downes, Lena M., Steiner, Ted J., Russell, Rebecca L., How, Jonathan P.

论文摘要

跨视图地理定位是GPS的补充或替代品,通过将从地面视图相机拍摄的图像与从卫星或飞机拍摄的架空图像相匹配,将代理定位在搜索区域内。尽管地面图像和架空图像之间的观点差异使得跨视图地理定位具有挑战性,但假设地面代理可以使用全景相机,则已经取得了重大进展。例如,我们先前的工作(WAG)引入了搜索区离散化,训练损失和粒子过滤器加权的变化,从而实现了城市规模的全景跨视野地理定位。但是,由于其复杂性和成本,全景相机并未在现有机器人平台中广泛使用。非跨跨视图地理定位更适用于机器人技术,但也更具挑战性。本文介绍了受限的FOV广泛地理定位(Rewag),这是一种跨视图地理定位方法,通过创建姿势吸引的嵌入并提供将粒子姿势掺入暹罗网络中的策略,可以将其推广到与标准的非卧层地面相机一起使用。 Rewag是一种神经网络和粒子滤波器系统,能够在GPS限制的环境中全球局部定位移动试剂,并且仅具有90度FOV摄像头,与与基线视觉变压器(VIT)方法相比,具有与全景相机相似的定位精度,并将本地化摄像头的WAG相似,并提高了本地化精度,并提高了100倍的定位精度。一个视频亮点,该视频亮点在https://youtu.be/u_obqrt8qce上展示了几十公里的测试路径上的收敛。

Cross-view geolocalization, a supplement or replacement for GPS, localizes an agent within a search area by matching images taken from a ground-view camera to overhead images taken from satellites or aircraft. Although the viewpoint disparity between ground and overhead images makes cross-view geolocalization challenging, significant progress has been made assuming that the ground agent has access to a panoramic camera. For example, our prior work (WAG) introduced changes in search area discretization, training loss, and particle filter weighting that enabled city-scale panoramic cross-view geolocalization. However, panoramic cameras are not widely used in existing robotic platforms due to their complexity and cost. Non-panoramic cross-view geolocalization is more applicable for robotics, but is also more challenging. This paper presents Restricted FOV Wide-Area Geolocalization (ReWAG), a cross-view geolocalization approach that generalizes WAG for use with standard, non-panoramic ground cameras by creating pose-aware embeddings and providing a strategy to incorporate particle pose into the Siamese network. ReWAG is a neural network and particle filter system that is able to globally localize a mobile agent in a GPS-denied environment with only odometry and a 90 degree FOV camera, achieving similar localization accuracy as what WAG achieved with a panoramic camera and improving localization accuracy by a factor of 100 compared to a baseline vision transformer (ViT) approach. A video highlight that demonstrates ReWAG's convergence on a test path of several dozen kilometers is available at https://youtu.be/U_OBQrt8qCE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源