论文标题
多角度QAOA并不总是需要所有角度
Multi-Angle QAOA Does Not Always Need All Its Angles
论文作者
论文摘要
将其他可调参数引入量子电路是提高性能而无需增加硬件要求的强大方法。最近引入的量子近似优化算法(MA-QAOA)的多安扩展可以显着提高与QAOA相比的溶液质量,通过允许哈密顿量中每个项的参数独立变化。然而,先前的结果表明,参数的冗余性相当大,其去除将降低参数优化的成本。在这项工作中,我们通过证明可以使用对称性来减少MA-QAOA使用的参数数量而不降低解决方案质量,从而显示问题对称性与参数冗余之间的连接。我们在所有7,565个连接的,非异态8节点图上研究具有非平凡对称组的最大切割,并在数值上表明,在这些图中有67.4%中,可以使用对称性来减少参数的数量,而无需降低目标,而参数的平均比率降低了28.1%。此外,我们表明,在35.9%的图中,可以通过简单地使用最大的对称性来实现此还原。对于减少参数数量导致目标减少的图表,最大的对称性可用于将参数计数减少37.1%,而目标仅减少6.1%。我们通过证明随机参数降低策略导致较差的性能来证明对称性的核心作用。
Introducing additional tunable parameters to quantum circuits is a powerful way of improving performance without increasing hardware requirements. A recently introduced multiangle extension of the quantum approximate optimization algorithm (ma-QAOA) significantly improves the solution quality compared with QAOA by allowing the parameters for each term in the Hamiltonian to vary independently. Prior results suggest, however, considerable redundancy in parameters, the removal of which would reduce the cost of parameter optimization. In this work we show numerically the connection between the problem symmetries and the parameter redundancy by demonstrating that symmetries can be used to reduce the number of parameters used by ma-QAOA without decreasing the solution quality. We study Max-Cut on all 7,565 connected, non-isomorphic 8-node graphs with a nontrivial symmetry group and show numerically that in 67.4% of these graphs, symmetry can be used to reduce the number of parameters with no decrease in the objective, with the average ratio of parameters reduced by 28.1%. Moreover, we show that in 35.9% of the graphs this reduction can be achieved by simply using the largest symmetry. For the graphs where reducing the number of parameters leads to a decrease in the objective, the largest symmetry can be used to reduce the parameter count by 37.1% at the cost of only a 6.1% decrease in the objective. We demonstrate the central role of symmetries by showing that a random parameter reduction strategy leads to much worse performance.