论文标题

尖头编织的Hopf代数的分解定理

A decomposition Theorem for pointed braided Hopf algebras

论文作者

Heckenberger, Istvan, Schäfer, Katharina

论文摘要

对编织的尖头HOPF代数的已知基本定理指出,对于每个固定子代数,符合一些属性,都有一个相关的商煤层右模块,因此可以将编织的Hopf代数分解为这两者的张量产品。通常,人们认为在普通的Hopf代数的YeTer-Drinfeld类别中编织的Hopf代数。在这种情况下,编织的Hopf代数尤其是一个综合物,以及许多有趣的螺旋坐骨亚词架。我们通过证明分解与该共生结构兼容,如果基本的普通HOPF代数是cosemisimple,则扩展了上述定理。

A known fundamental Theorem for braided pointed Hopf algebras states that for each coideal subalgebra, that fulfils a few properties, there is an associated quotient coalgebra right module such that the braided Hopf algebra can be decomposed into a tensor product of these two. Often one considers braided Hopf algebras in a Yetter-Drinfeld category of an ordinary Hopf algebra. In this case the braided Hopf algebra is in particular a comodule, as well as many interesting coideal subalgebras. We extend the mentioned Theorem by proving that the decomposition is compatible with this comodule structure if the underlying ordinary Hopf algebra is cosemisimple.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源