论文标题
UNAV:针对失明和低视力的人的基于基础设施的基于基础设施的导航系统
UNav: An Infrastructure-Independent Vision-Based Navigation System for People with Blindness and Low vision
论文作者
论文摘要
现在,基于视觉的本地化方法是针对来自机器人技术到辅助技术的无数用例的新出现的导航管道的基础。与基于传感器的解决方案相比,基于视觉的定位不需要预安装的传感器基础架构,这是昂贵,耗时和/或通常不可行的。在本文中,我们为特定用例提出了一种基于视觉的本地化管道:针对失明和低视力的最终用户的导航支持。给定最终用户在移动应用程序上拍摄的查询图像,管道利用视觉位置识别(VPR)算法在目标空间的参考图像数据库中找到相似的图像。这些相似图像的地理位置用于采用加权平均方法来估计最终用户的位置和透视 - n点(PNP)算法的下游任务中,以估计最终用户的方向。此外,该系统实现了Dijkstra的算法,以根据包括Trip Origin和Destination的可通航地图计算最短路径。用于本地化和导航的拓扑映射是使用自定义的图形用户界面构建的,该图形用户界面投影了3D重建的稀疏映射,从一系列图像构建到相应的先验2D楼平面图。用于地图构造的顺序图像可以在预映射步骤中收集,也可以通过公共数据库/公民科学清除。端到端系统可以使用带有自定义移动应用程序的相机安装在任何可互联网的设备上。出于评估目的,在复杂的医院环境中测试了映射和定位。评估结果表明,我们的系统可以在不了解相机内在参数(例如焦距)的情况下以少于1米的平均误差来实现本地化。
Vision-based localization approaches now underpin newly emerging navigation pipelines for myriad use cases from robotics to assistive technologies. Compared to sensor-based solutions, vision-based localization does not require pre-installed sensor infrastructure, which is costly, time-consuming, and/or often infeasible at scale. Herein, we propose a novel vision-based localization pipeline for a specific use case: navigation support for end-users with blindness and low vision. Given a query image taken by an end-user on a mobile application, the pipeline leverages a visual place recognition (VPR) algorithm to find similar images in a reference image database of the target space. The geolocations of these similar images are utilized in downstream tasks that employ a weighted-average method to estimate the end-user's location and a perspective-n-point (PnP) algorithm to estimate the end-user's direction. Additionally, this system implements Dijkstra's algorithm to calculate a shortest path based on a navigable map that includes trip origin and destination. The topometric map used for localization and navigation is built using a customized graphical user interface that projects a 3D reconstructed sparse map, built from a sequence of images, to the corresponding a priori 2D floor plan. Sequential images used for map construction can be collected in a pre-mapping step or scavenged through public databases/citizen science. The end-to-end system can be installed on any internet-accessible device with a camera that hosts a custom mobile application. For evaluation purposes, mapping and localization were tested in a complex hospital environment. The evaluation results demonstrate that our system can achieve localization with an average error of less than 1 meter without knowledge of the camera's intrinsic parameters, such as focal length.