论文标题
太阳能邻域的小尺度运动学结构的化学动力学年龄,〜250,000 K和M矮人
Chemodynamical Ages of Small-Scale Kinematic Structures of the Galactic Disc in the Solar Neighborhood from ~250,000 K and M Dwarfs
论文作者
论文摘要
我们将光度计金属性与Gaia DR3的天文学相结合,以检查太阳邻域(SN)中〜250,000 K矮人的化学动力结构。在运动学中,我们观察到“运动组”的山脊/团块,就像对更大的主序列恒星的研究一样。在这里,我们注意到与速度空间中周围区域相比,金属性和垂直速度的明显差异,并假设这是由于平均年龄差异所致。为了测试这一点,我们开发了一种估计恒星亚群的年龄分布的方法。在这种方法中,我们使用galah数据来定义2 Gyr的年龄箱中W的概率分布,并确定最佳年龄分布作为这些分布的最佳加权总和。然后使用Galah子集验证此过程。我们估计运动平面中区域的可能年龄分布,在那里我们发现与运动学组相关的显着亚构件。最值得注意的是,我们发现大力神流中的年龄梯度与出生半径相关。最后,我们检查弯曲和呼吸模式随着年龄的函数。由此,我们观察到弯曲幅度随着年龄的增长的潜在提示,这将需要进一步的分析才能确认。这是最早使用主要低质量恒星在SN中检查这些化学动力学的研究之一,我们希望这些发现可以更好地限制银河系的动态模型,因为样本量提供了分辨率的增加。
We combine photometric metallicities with astrometry from Gaia DR3 to examine the chemodynamic structure of ~250,000 K dwarfs in the Solar Neighborhood (SN). In kinematics, we observe ridges/clumps of "kinematic groups", like studies of more massive main-sequence stars. Here we note clear differences in both metallicity and vertical velocity as compared to the surrounding regions in velocity space and hypothesize this is due to differences in mean age. To test this, we develop a method to estimate the age distribution of sub-populations of stars. In this method, we use GALAH data to define probability distributions of W vs. [M/H] in age bins of 2 Gyr and determine optimal age distributions as the best fit weighted sum of these distributions. This process is then validated using the GALAH subset. We estimate the probable age distribution for regions in the kinematic plane, where we find significant sub-structure that is correlated with the kinematic groups. Most notably, we find an age gradient across the Hercules streams that is correlated with birth radius. Finally, we examine the bending and breathing modes as a function of age. From this, we observe potential hints of an increase in the bending amplitude with age, which will require further analysis in order to confirm it. This is one of the first studies to examine these chemodynamics in the SN using primarily low-mass stars and we hope these findings can better constrain dynamical models of the Milky Way due to the increase in resolution the sample size provides.