论文标题
一种图像处理方法,以识别Kodaikanal太阳能天文台在393.37 nm处观察到的太阳水库
An Image Processing approach to identify solar plages observed at 393.37 nm by the Kodaikanal Solar Observatory
论文作者
论文摘要
太阳水箱是太阳表面上的明亮区域,是太阳能活动的重要指标。在这项研究中,我们提出了一种自动化算法,用于鉴定从Kodaikanal太阳天文台获得的CA K波长太阳能数据中的太阳储备。该算法成功地注释了图像中的所有视觉识别库,并输出相应的计算材料索引。我们对多个太阳周期的材料指数(滚动平均值)进行时间序列分析,以测试算法的可靠性和鲁棒性。结果表明,计算出的材料指数与先前研究中报道的指数之间存在很强的相关性。所有太阳周期获得的相关系数高于0.90,表明该模型的可靠性。我们还建议,使用基于Web的应用程序适当地调整特定图像可以提高模型的效率。该算法已在简化的社区云平台上部署,用户可以在其中上传图像并自定义超参数以获得所需的结果。本研究中使用的输入数据可从KSO数据存档中免费获得,并且代码和生成的数据在我们的GitHub存储库中公开可用。我们提出的算法提供了一种有效且可靠的方法来识别太阳水箱,这可以帮助研究太阳活动及其对地球气候,技术和太空天气的影响。
Solar plages, which are bright regions on the Sun's surface, are an important indicator of solar activity. In this study, we propose an automated algorithm for identifying solar plages in Ca K wavelength solar data obtained from the Kodaikanal Solar Observatory. The algorithm successfully annotates all visually identifiable plages in an image and outputs the corresponding calculated plage index. We perform a time series analysis of the plage index (rolling mean) across multiple solar cycles to test the algorithm's reliability and robustness. The results show a strong correlation between the calculated plage index and those reported in a previous study. The correlation coefficients obtained for all the solar cycles are higher than 0.90, indicating the reliability of the model. We also suggest that adjusting the hyperparameters appropriately for a specific image using our web-based app can increase the model's efficiency. The algorithm has been deployed on the Streamlit Community Cloud platform, where users can upload images and customize the hyperparameters for desired results. The input data used in this study is freely available from the KSO data archive, and the code and the generated data are publicly available on our GitHub repository. Our proposed algorithm provides an efficient and reliable method for identifying solar plages, which can aid the study of solar activity and its impact on the Earth's climate, technology, and space weather.