论文标题

表示单词嵌入中的信息

Representing Affect Information in Word Embeddings

论文作者

Zhang, Yuhan, Chen, Wenqi, Zhang, Ruihan, Zhang, Xiajie

论文摘要

越来越多的自然语言处理研究(NLP)和自然语言理解(NLU)正在研究从大语言模型的嵌入一词中学习或编码的人类知识。这是了解哪些知识语言模型捕获的一步,类似于人类对语言和交流的理解。在这里,我们调查了单词(即价,唤醒,主导地位)的影响以及如何在大型神经网络中预先训练的单词嵌入中编码。我们将人类标记的数据集用作地面真理,并对四种单词嵌入方式进行了各种相关和分类测试。嵌入在静态或上下文化方面有所不同,并且在训练和微调阶段优先考虑特定信息的程度。我们的分析表明,嵌入Vanilla Bert模型的单词并未明显编码英语单词的影响信息。只有在与情绪相关的任务上进行微调或包含来自情绪丰富的环境中的额外上下文化信息时,只有对相应的嵌入方式编码更相关的影响信息,才能进行微调。

A growing body of research in natural language processing (NLP) and natural language understanding (NLU) is investigating human-like knowledge learned or encoded in the word embeddings from large language models. This is a step towards understanding what knowledge language models capture that resembles human understanding of language and communication. Here, we investigated whether and how the affect meaning of a word (i.e., valence, arousal, dominance) is encoded in word embeddings pre-trained in large neural networks. We used the human-labeled dataset as the ground truth and performed various correlational and classification tests on four types of word embeddings. The embeddings varied in being static or contextualized, and how much affect specific information was prioritized during the pre-training and fine-tuning phase. Our analyses show that word embedding from the vanilla BERT model did not saliently encode the affect information of English words. Only when the BERT model was fine-tuned on emotion-related tasks or contained extra contextualized information from emotion-rich contexts could the corresponding embedding encode more relevant affect information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源