论文标题
欧几里得曲线空间上的弹性指标:理论和算法
Elastic Metrics on Spaces of Euclidean Curves: Theory and Algorithms
论文作者
论文摘要
统计形状分析领域的一个主要目标是在沉浸式歧管的空间(例如欧几里得空间中的曲线空间)上定义可计算和信息性的指标。在弹性形状分析框架中采用的方法是通过从对参数化形状的空间上进行重新竞技化的riemannian度量开始来定义这样的度量,并诱导了差异性差异群体对商的指标。实际上,通过在差异组上找到两个形状的注册来计算此商度量。对于欧几里得曲线的空间,最初的Riemannian指标经常是从Sobolev指标的两参数家族中选择的,称为弹性指标。弹性指标特别方便,因为对于几种参数选择,它们在局部等距到riemannian指标,可以解释地测量边界问题 - 这些本地等法的众所周知的例子包括Younes,Michor和Square doal veLocity的复杂方形转换,包括Younes的复杂方形转换杰曼。在本文中,我们表明,SRV变换扩展到所有参数选择的弹性指标,以符合任何维度的曲线,从而充分概括了过去二十年来许多作者的工作。我们对弹性指标进行统一的处理:我们扩展了Trouvé和Younes,Bruveris以及Lahiri,Robinson和Klassen的结果,涉及注册问题的解决方案的存在,我们开发了计算距离和地理学的计算算法,并且我们将这些算法应用于统计数据,我们将这些算法应用于统计范围的质量较大的质量,以统计范围。
A main goal in the field of statistical shape analysis is to define computable and informative metrics on spaces of immersed manifolds, such as the space of curves in a Euclidean space. The approach taken in the elastic shape analysis framework is to define such a metric by starting with a reparameterization-invariant Riemannian metric on the space of parameterized shapes and inducing a metric on the quotient by the group of diffeomorphisms. This quotient metric is computed, in practice, by finding a registration of two shapes over the diffeomorphism group. For spaces of Euclidean curves, the initial Riemannian metric is frequently chosen from a two-parameter family of Sobolev metrics, called elastic metrics. Elastic metrics are especially convenient because, for several parameter choices, they are known to be locally isometric to Riemannian metrics for which one is able to solve the geodesic boundary problem explictly -- well-known examples of these local isometries include the complex square root transform of Younes, Michor, Mumford and Shah and square root velocity (SRV) transform of Srivastava, Klassen, Joshi and Jermyn. In this paper, we show that the SRV transform extends to elastic metrics for all choices of parameters, for curves in any dimension, thereby fully generalizing the work of many authors over the past two decades. We give a unified treatment of the elastic metrics: we extend results of Trouvé and Younes, Bruveris as well as Lahiri, Robinson and Klassen on the existence of solutions to the registration problem, we develop algorithms for computing distances and geodesics, and we apply these algorithms to metric learning problems, where we learn optimal elastic metric parameters for statistical shape analysis tasks.