论文标题

尺寸不可压缩的Euler方程的准周期溶液两个及更高

Quasi-periodic solutions to the incompressible Euler equations in dimensions two and higher

论文作者

Enciso, Alberto, Peralta-Salas, Daniel, de Lizaur, Francisco Torres

论文摘要

在Crouseilles和Faou的工作中,我们在2D案例上的工作,为不可压缩的Euler方程构建了$ C^\ Infty $ Quasi-periodic解决方案,并在尺寸3和任何均匀的尺寸中定期边界条件。这些解决方案是真正的高维度,这特别有趣,因为很少有高维初始数据的例子已知全球解决方案存在。这些准周期的溶液可以设计,以便它们在嵌入螺线管矢量场空间中的任意维尺寸的摩tori上密集。此外,在二维情况下,我们表明准周期溶液在Euler方程的相空间中密集。更准确地说,对于任何整数$ n \ geq 1 $,我们证明,任何$ l^q $初始流函数都可以在$ l^q $中近似(强烈的时候,当$ 1 \ leq q <\ infty $和nef-iffty $和nef-*当$ q = \ infty $)通过平滑的初始数据在$ n $ n $ dimemensional上加密的求解。

Building on the work of Crouseilles and Faou on the 2D case, we construct $C^\infty$ quasi-periodic solutions to the incompressible Euler equations with periodic boundary conditions in dimension 3 and in any even dimension. These solutions are genuinely high-dimensional, which is particularly interesting because there are extremely few examples of high-dimensional initial data for which global solutions are known to exist. These quasi-periodic solutions can be engineered so that they are dense on tori of arbitrary dimension embedded in the space of solenoidal vector fields. Furthermore, in the two-dimensional case we show that quasi-periodic solutions are dense in the phase space of the Euler equations. More precisely, for any integer $N\geq 1$ we prove that any $L^q$ initial stream function can be approximated in $L^q$ (strongly when $1\leq q< \infty$ and weak-* when $q=\infty$) by smooth initial data whose solutions are dense on $N$-dimensional tori.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源