论文标题

使用导航速度场的多机器人辅助人群疏散

Multi-Robot-Assisted Human Crowd Evacuation using Navigation Velocity Fields

论文作者

Zheng, Tongjia, Yuan, Zhenyuan, Nayyar, Mollik, Wagner, Alan R., Zhu, Minghui, Lin, Hai

论文摘要

这项工作研究了一个由机器人辅助的人群疏散问题,我们控制了一小群机器人,以指导大量的人群到安全的位置。挑战在于如何建模人类机器人的相互作用和设计机器人控制以间接控制人口,从而超过了机器人。为了应对挑战,我们将人群视为连续体,并将疏散目标提出,以推动人群密度到目标位置。我们提出了一个新型的平均模型,该模型由一个微观方程组成,该系列明确地模拟了人类运动如何以机器人的局部为指导和相关的宏观方程,该方程描述了人群密度如何由所有机器人产生的导航速度场控制。然后,我们为机器人设计密度反馈控制器,以动态调整其状态,以使生成的导航速度场将人群密度驱动到目标密度。证明了拟议控制器的稳定性保证。包括基于代理的模拟来评估所提出的疏散算法。

This work studies a robot-assisted crowd evacuation problem where we control a small group of robots to guide a large human crowd to safe locations. The challenge lies in how to model human-robot interactions and design robot controls to indirectly control a human population that significantly outnumbers the robots. To address the challenge, we treat the crowd as a continuum and formulate the evacuation objective as driving the crowd density to target locations. We propose a novel mean-field model which consists of a family of microscopic equations that explicitly model how human motions are locally guided by the robots and an associated macroscopic equation that describes how the crowd density is controlled by the navigation velocity fields generated by all robots. Then, we design density feedback controllers for the robots to dynamically adjust their states such that the generated navigation velocity fields drive the crowd density to a target density. Stability guarantees of the proposed controllers are proven. Agent-based simulations are included to evaluate the proposed evacuation algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源