论文标题

通过共形转换解决无界域的Dirichlet问题

Solving a Dirichlet problem for unbounded domains via a conformal transformation

论文作者

Gibara, Ryan, Korte, Riikka, Shanmugalingam, Nageswari

论文摘要

在本文中,我们解决了$ p $ -dirichlet问题的besov边界数据在无限制的统一域上具有边界边界的边界数据,当该域配备了满足庞加莱不平等的加倍措施时。这是通过研究一类变换来实现的,这些变换最近被证明在保持统一性的同时使域界定。这些转换以一种取决于到达域边界的距离以及量度的参数$ p $的方式将度量标准和度量变形。我们表明,转变的度量是加倍,而转变的领域支持庞加莱的不平等。这使我们能够将有界统一域的已知结果传输到无界域的结果,包括跟踪结果和ADAMS类型的不等式,最终导致解决BESOV类中边界数据的Dirichlet问题的解决方案。

In this paper, we solve the $p$-Dirichlet problem for Besov boundary data on unbounded uniform domains with bounded boundaries when the domain is equipped with a doubling measure satisfying a Poincaré inequality. This is accomplished by studying a class of transformations that have been recently shown to render the domain bounded while maintaining uniformity. These transformations conformally deform the metric and measure in a way that depends on the distance to the boundary of the domain and, for the measure, a parameter $p$. We show that the transformed measure is doubling and the transformed domain supports a Poincaré inequality. This allows us to transfer known results for bounded uniform domains to unbounded ones, including trace results and Adams-type inequalities, culminating in a solution to the Dirichlet problem for boundary data in a Besov class.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源