论文标题

使用平衡传播的序列学习

Sequence Learning Using Equilibrium Propagation

论文作者

Bal, Malyaban, Sengupta, Abhronil

论文摘要

平衡传播(EP)是一种强大,更可行的替代方案,可替代传统学习框架,例如反向传播。 EP的有效性源于以下事实:它仅依赖于局部计算,并且在其两个训练阶段中仅需要一种计算单元,从而使在诸如生物启发的神经形态计算之类的领域中提供了更大的适用性。 EP中模型的动力学受能量函数的控制,因此模型的内部状态遵循由同一定义的状态过渡规则融合到稳态。但是,根据定义,EP要求对模型(收敛性RNN)的输入在两个训练阶段中都是静态的。因此,不可能使用EP与LSTM或GRU这样的架构设计用于序列分类的模型。在本文中,我们利用现代Hopfield网络中的最新发展来进一步了解基于能量的模型,并使用EP开发用于复杂序列分类任务的解决方案,同时满足其收敛标准,并保持其理论相似性,并以反复的反向传播。我们探讨了将现代Hopfield网络与EP中使用的Conviongent RNN模型集成为注意机制的可能性,从而在自然语言处理中首次将其适用性扩展到两个不同的序列分类任务上。情感分析(IMDB数据集)和自然语言推断(SNLI数据集)。

Equilibrium Propagation (EP) is a powerful and more bio-plausible alternative to conventional learning frameworks such as backpropagation. The effectiveness of EP stems from the fact that it relies only on local computations and requires solely one kind of computational unit during both of its training phases, thereby enabling greater applicability in domains such as bio-inspired neuromorphic computing. The dynamics of the model in EP is governed by an energy function and the internal states of the model consequently converge to a steady state following the state transition rules defined by the same. However, by definition, EP requires the input to the model (a convergent RNN) to be static in both the phases of training. Thus it is not possible to design a model for sequence classification using EP with an LSTM or GRU like architecture. In this paper, we leverage recent developments in modern hopfield networks to further understand energy based models and develop solutions for complex sequence classification tasks using EP while satisfying its convergence criteria and maintaining its theoretical similarities with recurrent backpropagation. We explore the possibility of integrating modern hopfield networks as an attention mechanism with convergent RNN models used in EP, thereby extending its applicability for the first time on two different sequence classification tasks in natural language processing viz. sentiment analysis (IMDB dataset) and natural language inference (SNLI dataset).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源