论文标题

riemannian几何形状构成了广义的谎言代数,将一般相对论与量子理论结合在一起1

Riemannian Geometry Framed as a Generalized Lie Algebra to Incorporate General Relativity with Quantum Theory 1

论文作者

Johnson, Joseph E.

论文摘要

本文将Riemannian的几何形状重新构建为普遍的谎言代数,允许RG的方程式,然后将一般相对论表示为基本操作员之间的换向关系。我们从N运算符的Abelian Lie代数开始,X的同时特征值Y定义了一个真正的N维空间。然后,使用n个新运算符将其定义为独立函数,我们根据希尔伯特空间表示,根据其特征值定义了逆转和协变量张量。然后,我们定义了n个其他操作员D,其指数映射是要翻译X,该X由非共同代数(可观察到)定义,在这些代数中,结构常数显示为X运算符的度量函数,从而允许在D Operators中导致非交换器的空间曲率。然后,D运算符具有Hilbert空间位置 - 二角形表示为广义差分运算符以及任意向量函数A(X),该函数A(X)以换向器的指标可以表达基督教符号,而Riemann,Ricci和RiCCI和其他Tensors作为此表示的换向器。传统的RG和GR以对角度表示的位置获得了2N+1个操作员的对角线表示。我们试图通过按照描述的概括为代数,为RG提供一个更通用的RG来支持GR,QT和SM的集成。

This paper reframes Riemannian geometry as a generalized Lie algebra allowing the equations of both RG and then General Relativity to be expressed as commutation relations among fundamental operators. We begin with an Abelian Lie algebra of n operators, X, whose simultaneous eigenvalues, y, define a real n-dimensional space. Then with n new operators defined as independent functions, we define contravariant and covariant tensors in terms of their eigenvalues, on a Hilbert space representation. We then define n additional operators, D, whose exponential map is to translate X as defined by a noncommutative algebra of operators (observables) where the structure constants are shown to be the metric functions of the X operators thus allowing for spatial curvature resulting in a noncommutativity among the D operators. The D operators then have a Hilbert space position-diagonal representation as generalized differential operators plus an arbitrary vector function A(X), which, with the metric, written as a commutator, can express the Christoffel symbols, and the Riemann, Ricci and other tensors as commutators in this representation. Traditional RG and GR are obtained in a position diagonal representation of this noncommutative algebra of 2n+1 operators. We seek to provide a more general framework for RG to support an integration of GR, QT, and the SM by generalizing Lie algebras as described.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源