论文标题

反作用预测中的公平和鲁棒性

Fairness and robustness in anti-causal prediction

论文作者

Makar, Maggie, D'Amour, Alexander

论文摘要

对分配转移和公平性的鲁棒性独立地成为了现代机器学习模型所需的两个重要的逃避。尽管这两个Desiderata似乎相关,但在实践中,它们之间的联系通常尚不清楚。在这里,我们通过因果镜头讨论这些连接,重点介绍了反作用预测任务,其中假定分类器的输入(例如,图像)是作为目标标签和受保护属性的函数生成的。通过采用这一观点,我们在共同的公平标准(分离)和鲁棒性 - 风险不变性的概念之间达到明确的联系。这些连接为在反疗法环境中应用分离标准提供了新的动机,并为关于公平性绩效折衷的旧讨论提供了信息。此外,我们的发现表明,鲁棒性动机的方法可用于执行分离,并且在实践中通常比旨在直接强制执行分离的方法更好。使用医疗数据集,我们从经验上验证了关于检测X射线肺炎的任务的发现,在这种情况下,性别群体的患病率差异激发了公平性缓解。我们的发现突出了选择和执行公平标准时考虑因果结构的重要性。

Robustness to distribution shift and fairness have independently emerged as two important desiderata required of modern machine learning models. While these two desiderata seem related, the connection between them is often unclear in practice. Here, we discuss these connections through a causal lens, focusing on anti-causal prediction tasks, where the input to a classifier (e.g., an image) is assumed to be generated as a function of the target label and the protected attribute. By taking this perspective, we draw explicit connections between a common fairness criterion - separation - and a common notion of robustness - risk invariance. These connections provide new motivation for applying the separation criterion in anticausal settings, and inform old discussions regarding fairness-performance tradeoffs. In addition, our findings suggest that robustness-motivated approaches can be used to enforce separation, and that they often work better in practice than methods designed to directly enforce separation. Using a medical dataset, we empirically validate our findings on the task of detecting pneumonia from X-rays, in a setting where differences in prevalence across sex groups motivates a fairness mitigation. Our findings highlight the importance of considering causal structure when choosing and enforcing fairness criteria.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源