论文标题
使用基于注意力的分层图池解释药物组合的协同作用机制
Interpreting the Mechanism of Synergism for Drug Combinations Using Attention-Based Hierarchical Graph Pooling
论文作者
论文摘要
协同药物组合为增强治疗疗效并降低不良反应提供了巨大的潜力。然而,由于未知的因果疾病信号通路,有效和协同的药物组合预测仍然是一个悬而未决的问题。尽管已经提出了各种深度学习(AI)模型来定量预测药物组合的协同作用,但现有深度学习方法的主要局限性是它们本质上是可解释的,这使得AI模型的结论是对人类专家的不透明的结论,而对这些模型结论和这些模型的实施能力的稳健性限制了现实的人类的实施能力。在本文中,我们开发了一个可解释的图神经网络(GNN),该神经网络(GNN)揭示了基本的基本治疗靶标和协同作用(MOS)的机制,通过挖掘非常重要的次分子网络。可解释的GNN预测模型的关键点是一个新颖的图池层,这是一个基于自我注意力的节点和边缘池(此后为SANEPOOL),可以根据基因组特征和拓扑来计算基因和连接的注意力评分(重要性)。因此,提出的GNN模型提供了一种系统的方法来预测和解释基于检测到的关键亚分子网络的药物组合协同作用。对各种辅助药物 - 杂种预测数据集进行的实验表明,(1)SANEPOOL模型具有较高的预测能力,可以产生准确的协同得分预测,并且(2)由SANEPOOL检测到的亚分子网络是可自动鉴定的,并且可以自言自语,并且可以识别出协同药物组合。
Synergistic drug combinations provide huge potentials to enhance therapeutic efficacy and to reduce adverse reactions. However, effective and synergistic drug combination prediction remains an open question because of the unknown causal disease signaling pathways. Though various deep learning (AI) models have been proposed to quantitatively predict the synergism of drug combinations, the major limitation of existing deep learning methods is that they are inherently not interpretable, which makes the conclusions of AI models untransparent to human experts, henceforth limiting the robustness of the model conclusion and the implementation ability of these models in real-world human--AI healthcare. In this paper, we develop an interpretable graph neural network (GNN) that reveals the underlying essential therapeutic targets and the mechanism of the synergy (MoS) by mining the sub-molecular network of great importance. The key point of the interpretable GNN prediction model is a novel graph pooling layer, a self-attention-based node and edge pool (henceforth SANEpool), that can compute the attention score (importance) of genes and connections based on the genomic features and topology. As such, the proposed GNN model provides a systematic way to predict and interpret the drug combination synergism based on the detected crucial sub-molecular network. Experiments on various well-adopted drug-synergy-prediction datasets demonstrate that (1) the SANEpool model has superior predictive ability to generate accurate synergy score prediction, and (2) the sub-molecular networks detected by the SANEpool are self-explainable and salient for identifying synergistic drug combinations.