论文标题
n $^3 $ lo二次旋转互动,用于通用紧凑型二进制文件
N$^3$LO Quadratic-in-Spin Interactions for Generic Compact Binaries
论文作者
论文摘要
我们通过纽约后重力(PN)重力的旋转对象的EFT得出了二次旋转扇区的第三个旋转(n $^3 $ lo)校正。这些更正包括以第五pn订单输入的通用紧凑型二进制文件的$ 4 $部门的贡献。这些贡献之一是由于新的潮汐相互作用,这是自旋行业所独有的,并补充了第一个在简单点质量扇区中以此PN顺序进入的潮汐相互作用。 Feynman图的评估是通过高级多环方法以通用维度进行的,并与对数结合产生了维度的调查极。在这些高旋转部门,一般的Lagrangians的减少需要重新定义线性秩序之外的位置。我们在这里提供最普遍的Lagrangians和Hamiltonians。然后,我们将后者指定为简化的配置,并在结合能,角动量和频率之间得出结果规范的不变关系。我们以对对应于哈密顿量扩展到简化对齐的旋转构型中散射问题的所有散射角度的推导结尾,作为散射散射研究的指南。
We derive the third subleading (N$^3$LO) corrections of the quadratic-in-spin sectors via the EFT of spinning objects in post-Newtonian (PN) gravity. These corrections consist of contributions from $4$ sectors for generic compact binaries, that enter at the fifth PN order. One of these contributions is due to a new tidal interaction, that is unique to the sectors with spin, and complements the first tidal interaction that also enters at this PN order in the simple point-mass sector. The evaluation of Feynman graphs is carried out in a generic dimension via advanced multi-loop methods, and gives rise to dimensional-regularization poles in conjunction with logarithms. At these higher-spin sectors the reduction of generalized Lagrangians entails redefinitions of the position beyond linear order. We provide here the most general Lagrangians and Hamiltonians. We then specify the latter to simplified configurations, and derive the consequent gauge-invariant relations among the binding energy, angular momentum, and frequency. We end with a derivation of all the scattering angles that correspond to an extension of our Hamiltonians to the scattering problem in the simplified aligned-spins configuration, as a guide to scattering-amplitudes studies.