论文标题

矮人中波动气体的光环加热

Halo heating from fluctuating gas in a model dwarf

论文作者

Hashim, Mahmoud, El-Zant, Amr, Freundlich, Jonathan, Read, Justin, Combes, Francoise

论文摘要

冷暗物质(CDM)结构形成方案面临(子)银河系尺度的挑战,其中至关重要,是“尖核”问题。一种已知的补救措施,将CDM从银河中心驱逐出境,通过反馈或绕气体或恒星的反馈或绕行团块产生的重力潜在的波动来调用与重子的相互作用。在这里,我们根据理论表述来解释流体动力模拟中的核心形成,这可能被认为是Chandrasekhar对两个身体放松理论的概括,而当密度波动并非来自白噪声而引起的情况下;它简单地表征了复杂的流体动力学和“亚基物理学”的影响。发现气体波动的功率谱遵循一系列尺度上的功率定律,适合完全湍流的可压缩培养基。导致核心形成的潜在波动几乎是正态分布的,这使得能量传递导致核心形成被描述为标准扩散过程,最初像Chandrasekhar理论一样增加了测试粒子的速度分散体。我们计算从波动气体到光环的能量转移,发现它与理论期望一致。我们还研究了如何重新分布对光环颗粒的初始动能输入以形成核心。形成芯内部内部的时间质量减小可以通过指数形式拟合;基于我们模型的简单处方将特征时间尺度与能量放松时间相关联。我们将所得理论密度分布与模拟中的理论密度分布进行比较。

The cold dark matter (CDM) structure formation scenario faces challenges on (sub)galactic scales, central among them being the `cusp-core' problem. A known remedy, driving CDM out of galactic centres, invokes interactions with baryons, through fluctuations in the gravitational potential arising from feedback or orbiting clumps of gas or stars. Here we interpret core formation in a hydrodynamic simulation in terms of a theoretical formulation, which may be considered a generalisation of Chandrasekhar's theory of two body relaxation to the case when the density fluctuations do not arise from white noise; it presents a simple characterisation of the effects of complex hydrodynamics and `subgrid physics'. The power spectrum of gaseous fluctuations is found to follow a power law over a range of scales, appropriate for a fully turbulent compressible medium. The potential fluctuations leading to core formation are nearly normally distributed, which allows for the energy transfer leading to core formation to be described as a standard diffusion process, initially increasing the velocity dispersion of test particles as in Chandrasekhar's theory. We calculate the energy transfer from the fluctuating gas to the halo and find it consistent with theoretical expectations. We also examine how the initial kinetic energy input to halo particles is redistributed to form a core. The temporal mass decrease inside the forming core may be fit by an exponential form; a simple prescription based on our model associates the characteristic timescale with an energy relaxation time. We compare the resulting theoretical density distribution with that in the simulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源