论文标题

细胞注意网络

Cell Attention Networks

论文作者

Giusti, Lorenzo, Battiloro, Claudio, Testa, Lucia, Di Lorenzo, Paolo, Sardellitti, Stefania, Barbarossa, Sergio

论文摘要

自引入以来,图形注意力网络在图表表示任务中取得了出色的结果。但是,这些网络仅考虑节点之间的成对关系,然后它们无法完全利用许多现实世界数据集中存在的高阶相互作用。在本文中,我们介绍了细胞注意网络(CANS),这是一种在图表上定义的数据上运行的神经体系结构,将图表表示为引入细胞复合物的1个骨骼,以捕获高阶相互作用。特别是,我们利用了细胞复合物中的下层和上层社区来设计两个独立的掩盖自我发项机制,从而推广了常规的图形注意力策略。罐中使用的方法是层次结构的,并结合了以下步骤:i)从{\ it node features}中学习{\ it Edge farture}的提升算法}; ii)一种细胞注意机制,可以在下层和上邻居上找到边缘特征的最佳组合; iii)层次{\ it边缘池}机制,以提取一组紧凑的有意义的特征。实验结果表明,CAN是一种低复杂性策略,它与基于图的学​​习任务上的最新结果相比。

Since their introduction, graph attention networks achieved outstanding results in graph representation learning tasks. However, these networks consider only pairwise relationships among nodes and then they are not able to fully exploit higher-order interactions present in many real world data-sets. In this paper, we introduce Cell Attention Networks (CANs), a neural architecture operating on data defined over the vertices of a graph, representing the graph as the 1-skeleton of a cell complex introduced to capture higher order interactions. In particular, we exploit the lower and upper neighborhoods, as encoded in the cell complex, to design two independent masked self-attention mechanisms, thus generalizing the conventional graph attention strategy. The approach used in CANs is hierarchical and it incorporates the following steps: i) a lifting algorithm that learns {\it edge features} from {\it node features}; ii) a cell attention mechanism to find the optimal combination of edge features over both lower and upper neighbors; iii) a hierarchical {\it edge pooling} mechanism to extract a compact meaningful set of features. The experimental results show that CAN is a low complexity strategy that compares favorably with state of the art results on graph-based learning tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源