论文标题

使用可区分的模拟学习对电势

Learning Pair Potentials using Differentiable Simulations

论文作者

Wang, Wujie, Wu, Zhenghao, Gómez-Bombarelli, Rafael

论文摘要

从实验或模拟数据中学习对的相互作用对于分子模拟引起了极大的兴趣。我们提出了一种通用随机方法,用于使用可区分的模拟(DIFFSIM)从数据中学习对相互作用。 DIFFSIM通过分子动力学(MD)仿真来定义基于结构可观察物(例如径向分布函数)的损耗函数。然后,使用反向传播直接通过随机梯度下降来直接学习相互作用势,以通过MD模拟计算相互作用势的结构损失度量的梯度。这种基于梯度的方法是灵活的,可以配置以同时模拟和优化多个系统。例如,可以同时学习不同温度或不同组合物的潜力。我们通过从径向分布函数中恢复简单的对势(例如Lennard-Jones系统)来证明该方法。我们发现,与迭代Boltzmann倒置相比,DIFFSIM可用于探测配对电位的更广泛的功能空间。我们表明,我们的方法可用于同时拟合不同组成和温度下的模拟电位,以提高学习势的可传递性。

Learning pair interactions from experimental or simulation data is of great interest for molecular simulations. We propose a general stochastic method for learning pair interactions from data using differentiable simulations (DiffSim). DiffSim defines a loss function based on structural observables, such as the radial distribution function, through molecular dynamics (MD) simulations. The interaction potentials are then learned directly by stochastic gradient descent, using backpropagation to calculate the gradient of the structural loss metric with respect to the interaction potential through the MD simulation. This gradient-based method is flexible and can be configured to simulate and optimize multiple systems simultaneously. For example, it is possible to simultaneously learn potentials for different temperatures or for different compositions. We demonstrate the approach by recovering simple pair potentials, such as Lennard-Jones systems, from radial distribution functions. We find that DiffSim can be used to probe a wider functional space of pair potentials compared to traditional methods like Iterative Boltzmann Inversion. We show that our methods can be used to simultaneously fit potentials for simulations at different compositions and temperatures to improve the transferability of the learned potentials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源