论文标题
拜林森 - 德林菲尔德舒伯特(Schubert)的帕哈里奇集团方案和扭曲的全球纽扣模块变种
Beilinson-Drinfeld Schubert varieties of parahoric group schemes and twisted global Demazure modules
论文作者
论文摘要
令$ \ Mathcal {g} $为parahoric bruhat-tits组计划,是由$γ$ -Curve $ c $和某些有限循环组的简单代数组$ g $上的$γ$ -Curve $ c $和一定的$γ$ Action产生的。我们证明了$ \ Mathcal {g} $的Beilinson-Drinfeld Schubert品种的平坦度,我们确定了Beilinson-Drinfeld Grassmannian $ {\ rm gr} _ {在$ {\ rm gr} _ {\ mathcal {g},c^n} $上的刚化线捆绑上的结构。 We develop an algebraic theory of global Demazure modules of twisted current algebras, and using our geometric results we prove that when $C = \mathbb{A}^1$, the spaces of global sections of line bundles on BD Schubert varieties of $\mathcal{G}$ are dual to the twisted global Demazure modules.这概括了杜曼斯基 - 芬基蛋白 - 芬金伯格在未介绍的环境中的工作,
Let $\mathcal{G}$ be a parahoric Bruhat-Tits group schemes arising from a $Γ$-curve $C$ and a certain $Γ$-action on a simple algebraic group $G$ for some finite cyclic group $Γ$. We prove the flatness of Beilinson-Drinfeld Schubert varieties of $\mathcal{G}$, we determine the rigidified Picard group of the Beilinson-Drinfeld Grassmannian ${\rm Gr}_{\mathcal{G},C^n}$ of $\mathcal{G}$, and we establish the factorizable and equivariant structures on rigidified line bundles on ${\rm Gr}_{\mathcal{G},C^n}$. We develop an algebraic theory of global Demazure modules of twisted current algebras, and using our geometric results we prove that when $C = \mathbb{A}^1$, the spaces of global sections of line bundles on BD Schubert varieties of $\mathcal{G}$ are dual to the twisted global Demazure modules. This generalizes the work of Dumanski-Feigin-Finkelberg in the untwisted setting,