论文标题
忘记记住:可扩展的增量学习框架,用于交叉任务盲图质量评估
Forgetting to Remember: A Scalable Incremental Learning Framework for Cross-Task Blind Image Quality Assessment
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Recent years have witnessed the great success of blind image quality assessment (BIQA) in various task-specific scenarios, which present invariable distortion types and evaluation criteria. However, due to the rigid structure and learning framework, they cannot apply to the cross-task BIQA scenario, where the distortion types and evaluation criteria keep changing in practical applications. This paper proposes a scalable incremental learning framework (SILF) that could sequentially conduct BIQA across multiple evaluation tasks with limited memory capacity. More specifically, we develop a dynamic parameter isolation strategy to sequentially update the task-specific parameter subsets, which are non-overlapped with each other. Each parameter subset is temporarily settled to Remember one evaluation preference toward its corresponding task, and the previously settled parameter subsets can be adaptively reused in the following BIQA to achieve better performance based on the task relevance. To suppress the unrestrained expansion of memory capacity in sequential tasks learning, we develop a scalable memory unit by gradually and selectively pruning unimportant neurons from previously settled parameter subsets, which enable us to Forget part of previous experiences and free the limited memory capacity for adapting to the emerging new tasks. Extensive experiments on eleven IQA datasets demonstrate that our proposed method significantly outperforms the other state-of-the-art methods in cross-task BIQA. The source code of the proposed method is available at https://github.com/maruiperfect/SILF.