论文标题
超导Qubit的量子计算的未来
The Future of Quantum Computing with Superconducting Qubits
论文作者
论文摘要
在历史上,我们首次看到随着量子处理单元(QPU)的出现,计算范式的分支点。通过超级多项式速度提取计算和实现量子算法的全部潜力,很可能需要在量子误差校正技术方面取得重大进步。同时,通过通过电路编织技术组合多个QPU,通过抑制和缓解来提高解决方案的质量,并专注于量子算法的启发式版本,可以通过量子算法的启发式版本与非刺激速度来提高解决方案的质量,从而可以在短期内实现计算优势。为此,量子计算硬件的性能需要改进,并且软件需要将量子和经典处理器无缝集成在一起,以形成我们称为量子中心超级计算的新体系结构。长期,我们看到的硬件利用了高于2D拓扑的量子连接性,以实现更有效的量子误差纠正代码,用于缩放QPU和并行化工作负载的模块化体系结构,以及使技术不可或缺的用户不可或缺的软件,并实现了无形的,并实现了无效的无效,有摩擦的量子计算的目标。
For the first time in history, we are seeing a branching point in computing paradigms with the emergence of quantum processing units (QPUs). Extracting the full potential of computation and realizing quantum algorithms with a super-polynomial speedup will most likely require major advances in quantum error correction technology. Meanwhile, achieving a computational advantage in the near term may be possible by combining multiple QPUs through circuit knitting techniques, improving the quality of solutions through error suppression and mitigation, and focusing on heuristic versions of quantum algorithms with asymptotic speedups. For this to happen, the performance of quantum computing hardware needs to improve and software needs to seamlessly integrate quantum and classical processors together to form a new architecture that we are calling quantum-centric supercomputing. Long term, we see hardware that exploits qubit connectivity in higher than 2D topologies to realize more efficient quantum error correcting codes, modular architectures for scaling QPUs and parallelizing workloads, and software that evolves to make the intricacies of the technology invisible to the users and realize the goal of ubiquitous, frictionless quantum computing.