论文标题

各向异性流入黑洞

Anisotropic Flows into Black Holes

论文作者

Caceres, Elena, Shashi, Sanjit

论文摘要

我们考虑在全息重新归一化组(RG)流动中各向异性黑洞。我们构建了一个$ $函数,该功能在边界和地平线上是固定的,并证明它在黑洞的外部和内部也很单调。尽管对称性减少了,但我们发现“径向”无效的能量条件足以确保存在此单调$ a $ aunction。在构建$ a $函数之后,我们探索了全息各向异性$ p $ - 波超流体状态,作为具体的示例和数值测试场。在这样做的过程中,我们发现$ a的功能在保留单调性的同时,在跨IR政权中表现出非平凡的振荡。我们发现证据表明,这种振荡似乎将跨IR流动到非平凡的固定点。最后,我们简要讨论了我们的工作如何符合全息RG流量的更广泛的程序和探测黑洞内部的量子信息方法。

We consider anisotropic black holes in the context of holographic renormalization group (RG) flows. We construct an $a$-function that is stationary at the boundary and the horizon and prove that it is also monotonic in both the exterior and the interior of the black hole. In spite of the reduced symmetry, we find that the "radial" null energy condition is sufficient to ensure the existence of this monotonic $a$-function. After constructing the $a$-function, we explore a holographic anisotropic $p$-wave superfluid state as a concrete example and numerical testing grounds. In doing so, we find that the $a$-function exhibits nontrivial oscillations in the trans-IR regime while preserving monotonicity. We find evidence that such oscillations appear to drive the trans-IR flow into nontrivial fixed points. We conclude by briefly discussing how our work fits into both the broader program of holographic RG flow and quantum information approaches to probing the black hole interior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源