论文标题

在道路网络和轨迹上共同进行对比代表学习

Jointly Contrastive Representation Learning on Road Network and Trajectory

论文作者

Mao, Zhenyu, Li, Ziyue, Li, Dedong, Bai, Lei, Zhao, Rui

论文摘要

道路网络和轨迹表示学习对于交通系统至关重要,因为学习的表示形式可以直接用于各种下游任务(例如,交通速度推理和旅行时间估计)。但是,大多数现有方法仅在同一尺度内对比,即分别处理道路网络和轨迹,这些方法忽略了有价值的相互关系。在本文中,我们旨在提出一个统一的框架,该框架共同学习道路网络和轨迹表示端到端。我们为公路对比和轨迹 - 轨迹对比度设计了特定领域的增强,即分别与其上下文邻居和轨迹分别替换和丢弃替代方案。最重要的是,我们进一步引入了路面跨尺度对比,与最大化总互信息桥接了两个尺度。与仅在形成鲜明对比及其归属节点的图表上的现有跨尺度对比度学习方法不同,路段和轨迹之间的对比是通过新颖的正面采样和适应性加权策略精心量身定制的。我们基于两个实际数据集进行了审慎的实验,并具有四个下游任务,从而提高了性能和有效性。该代码可在https://github.com/mzy94/jclrnt上找到。

Road network and trajectory representation learning are essential for traffic systems since the learned representation can be directly used in various downstream tasks (e.g., traffic speed inference, and travel time estimation). However, most existing methods only contrast within the same scale, i.e., treating road network and trajectory separately, which ignores valuable inter-relations. In this paper, we aim to propose a unified framework that jointly learns the road network and trajectory representations end-to-end. We design domain-specific augmentations for road-road contrast and trajectory-trajectory contrast separately, i.e., road segment with its contextual neighbors and trajectory with its detour replaced and dropped alternatives, respectively. On top of that, we further introduce the road-trajectory cross-scale contrast to bridge the two scales by maximizing the total mutual information. Unlike the existing cross-scale contrastive learning methods on graphs that only contrast a graph and its belonging nodes, the contrast between road segment and trajectory is elaborately tailored via novel positive sampling and adaptive weighting strategies. We conduct prudent experiments based on two real-world datasets with four downstream tasks, demonstrating improved performance and effectiveness. The code is available at https://github.com/mzy94/JCLRNT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源