论文标题

新用户和项目的可扩展推荐引擎

A Scalable Recommendation Engine for New Users and Items

论文作者

Xu, Boya, Deng, Yiting, Mela, Carl

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In many digital contexts such as online news and e-tailing with many new users and items, recommendation systems face several challenges: i) how to make initial recommendations to users with little or no response history (i.e., cold-start problem), ii) how to learn user preferences on items (test and learn), and iii) how to scale across many users and items with myriad demographics and attributes. While many recommendation systems accommodate aspects of these challenges, few if any address all. This paper introduces a Collaborative Filtering (CF) Multi-armed Bandit (B) with Attributes (A) recommendation system (CFB-A) to jointly accommodate all of these considerations. Empirical applications including an offline test on MovieLens data, synthetic data simulations, and an online grocery experiment indicate the CFB-A leads to substantial improvement on cumulative average rewards (e.g., total money or time spent, clicks, purchased quantities, average ratings, etc.) relative to the most powerful extant baseline methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源