论文标题

物质波的二维非线性泵

Two-dimensional nonlinear Thouless pumping of matter waves

论文作者

Fu, Qidong, Wang, Peng, Kartashov, Yaroslav V., Konotop, Vladimir V., Ye, Fangwei

论文摘要

从理论上讲,我们考虑了在二维动力学光学晶格中载荷的bose-Einstein冷凝物的非线性泵送。我们遇到了泵送的三种不同情况:准线性的一种用于逐渐分散的波包,由单个二维孤子携带的传输以及当初始波数据包分解为几个孤子时,由单个二维孤子携带的传输和多索顿式。要实现的情况取决于初始波数据包中原子的数量以及两体相互作用的强度。波袋的位移的大小和方向由人口稠密能带的Chern数量以及由两体相互作用引起的频段间跃迁确定。作为一个示例,我们探索了由光学晶格产生的可分离电位,其本构型sublatices在正交方向上经历相对运动。对于此类潜力,遵守平等时间对称性,分数Chern数在进化的半个时期计算出来,获得了相关性。我们主要集中在孤子场景上,表明一种soliton泵送发生在相对较小的和足够大的初始波袋的幅度,而在中间振幅下,传输是多元的。我们还描述了泵的特征性,其特征在于正交方向上晶格的调制的两个不同的相应时期。

We consider theoretically the nonlinear quantized Thouless pumping of a Bose-Einstein condensate loaded in a two-dimensional dynamical optical lattices. We encountered three different scenarios of the pumping: quasi-linear one occurring for gradually dispersing wave packets, transport carried by a single two-dimensional soliton, and multi-soliton regime when initial wave packet splits into several solitons. The scenario to be realized depends on the number of atoms in the initial wave packet and on the strength of the two-body interactions. The magnitude and direction of the displacement of a wavepacket are determined by Chern numbers of the populated energy bands and by the inter-band transitions induced by two-body interactions. As a case example we explore a separable potential created by optical lattices whose constitutive sublattices undergo relative motion in the orthogonal directions. For such potentials, obeying parity-time symmetry, fractional Chern numbers, computed over half period of the evolution, acquire relevance. We focus mainly on solitonic scenarios, showing that one-soliton pumping occurs at relatively small as well as at sufficiently large amplitudes of the initial wavepacket, while at intermediate amplitudes the transport is multi-solitonic. We also describe peculiarities of the pumping characterized by two different commensurate periods of the modulations of the lattices in the orthogonal directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源