论文标题

CAIBC:捕获基于文本的人检索的全面信息超出颜色

CAIBC: Capturing All-round Information Beyond Color for Text-based Person Retrieval

论文作者

Wang, Zijie, Zhu, Aichun, Xue, Jingyi, Wan, Xili, Liu, Chao, Wang, Tian, Li, Yifeng

论文摘要

给定自然语言描述,基于文本的人检索旨在从大规模人物图像数据库中识别目标人的图像。现有方法通常面对\ textbf {颜色过度依赖问题},这意味着在匹配跨模式数据时,模型在很大程度上依赖颜色信息。确实,色彩信息是检索的重要决策,但是对颜色的过度依赖会分散模型与其他关键线索(例如纹理信息,结构信息等)的注意力,从而导致了次优的检索性能。 To solve this problem, in this paper, we propose to \textbf{C}apture \textbf{A}ll-round \textbf{I}nformation \textbf{B}eyond \textbf{C}olor (\textbf{CAIBC}) via a jointly optimized multi-branch architecture for text-based person retrieval. CAIBC包含三个分支,包括RGB分支,灰度(GRS)分支和颜色(CLR)分支。此外,为了以平衡有效的方式充分利用全方位信息,采用了相互学习机制来启用三个分支,这些分支可以参加各种信息,以相互交流和学习。进行了广泛的实验分析,以评估我们在\ textbf {监督}和\ textbf {弱监督}基于文本的人检索的\ textbf {cuhk-pedes和rstpreid数据集上提出的CAIBC方法,这表明CAIBC明显超过了现有的方法,并在众多的方法中表现出了三个任务。

Given a natural language description, text-based person retrieval aims to identify images of a target person from a large-scale person image database. Existing methods generally face a \textbf{color over-reliance problem}, which means that the models rely heavily on color information when matching cross-modal data. Indeed, color information is an important decision-making accordance for retrieval, but the over-reliance on color would distract the model from other key clues (e.g. texture information, structural information, etc.), and thereby lead to a sub-optimal retrieval performance. To solve this problem, in this paper, we propose to \textbf{C}apture \textbf{A}ll-round \textbf{I}nformation \textbf{B}eyond \textbf{C}olor (\textbf{CAIBC}) via a jointly optimized multi-branch architecture for text-based person retrieval. CAIBC contains three branches including an RGB branch, a grayscale (GRS) branch and a color (CLR) branch. Besides, with the aim of making full use of all-round information in a balanced and effective way, a mutual learning mechanism is employed to enable the three branches which attend to varied aspects of information to communicate with and learn from each other. Extensive experimental analysis is carried out to evaluate our proposed CAIBC method on the CUHK-PEDES and RSTPReid datasets in both \textbf{supervised} and \textbf{weakly supervised} text-based person retrieval settings, which demonstrates that CAIBC significantly outperforms existing methods and achieves the state-of-the-art performance on all the three tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源