论文标题
部分可观测时空混沌系统的无模型预测
Emergent universe: tensor perturbations within the CSL framework
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We calculate the primordial power spectrum of tensor perturbations, within the emergent universe scenario, incorporating a version of the Continuous Spontaneous Localization (CSL) model as a mechanism capable of: breaking the initial symmetries of the system, generating the perturbations, and also achieving the quantum-to-classical transition of such perturbations. We analyze how the CSL model modifies the characteristics of the B-mode CMB polarization power spectrum, and we explore their differences with current predictions from the standard concordance cosmological model. We have found that, regardless of the CSL mechanism, a confirmed detection of primordial B-modes that fits to a high degree of precision the shape of the spectrum predicted from the concordance $Λ$CDM model, would rule out one of the distinguishing features of the emergent universe. Namely, achieving a best fit to the data consistent with the suppression observed in the low multipoles of the angular power spectrum of the temperature anisotropy of the CMB. On the contrary, a confirmed detection that accurately exhibits a suppression of the low multipoles in the B-modes, would be a new feature that could be considered as a favorable evidence for the emergent scenario. In addition, we have been able to establish an upper bound on the collapse parameter of the specific CSL model used.