论文标题

DIFFEORAPTOR:使用Raptor的差异模式间图像登记

DiffeoRaptor: Diffeomorphic Inter-modal Image Registration using RaPTOR

论文作者

Masoumi, Nima, Rivaz, Hassan, Ahmad, M. Omair, Xiao, Yiming

论文摘要

目的:在许多医学成像应用中,差异图像注册至关重要。已经提出了几种这种类型的注册算法,但主要用于对比内对齐。当前,在众多应用中至关重要的有效模式间/对比度差异注册仍然是一项艰巨的任务。方法:我们提出了一种新型的模式间/对比度登记算法,该算法利用稳健的贴片相关比(RAPTOR)指标允许允许模式间/对比图像对准和频带的地理射击,以傅立叶近似lie代数(flash)algorithm(flash)algorithm进行快速扩散量表。结果:所提出的算法(称为Diffeoraptor)通过三个公共数据库进行了验证,用于大脑和腹部图像注册任务,同时将结果与三种最先进的技术进行比较,包括Flash,NiftyReg和对称图像归一化(SYN)。结论:我们的结果表明,在注册准确性方面,Diffeoraptor提供了可比或更好的注册性能。此外,在模式间和对比度登记中,差异型会产生比SYN的更光滑的变形。 DiffeorAptor的代码可在https://github.com/nimamasoumi/diffeoraptor上公开获得。

Purpose: Diffeomorphic image registration is essential in many medical imaging applications. Several registration algorithms of such type have been proposed, but primarily for intra-contrast alignment. Currently, efficient inter-modal/contrast diffeomorphic registration, which is vital in numerous applications, remains a challenging task. Methods: We proposed a novel inter-modal/contrast registration algorithm that leverages Robust PaTch-based cOrrelation Ratio (RaPTOR) metric to allow inter-modal/contrast image alignment and bandlimited geodesic shooting demonstrated in Fourier Approximated Lie Algebras (FLASH) algorithm for fast diffeomorphic registration. Results: The proposed algorithm, named DiffeoRaptor, was validated with three public databases for the tasks of brain and abdominal image registration while comparing the results against three state-of-the-art techniques, including FLASH, NiftyReg, and Symmetric image normalization (SyN). Conclusions: Our results demonstrated that DiffeoRaptor offered comparable or better registration performance in terms of registration accuracy. Moreover, DiffeoRaptor produces smoother deformations than SyN in inter-modal and contrast registration. The code for DiffeoRaptor is publicly available at https://github.com/nimamasoumi/DiffeoRaptor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源