论文标题

在动量空间减法方案中

Semileptonic weak Hamiltonian to $\mathcal{O}(αα_s(μ_{\mathrm{Lattice}}))$ in momentum-space subtraction schemes

论文作者

Gorbahn, M., Jäger, S., Moretti, F., van der Merwe, E.

论文摘要

标准模型的CKM单位性精度测试需要对半静电衰变的电磁和强校正进行系统处理。电磁校正需要半衰弱的四个fermion操作员重新归一化。在这项工作中,我们计算$ \ MATHCAL {O}(αα_S)$扰动方案在$ \ bar {\ rm MS} $方案与几个动量空间减法方案之间的转换,这也可以在lattice上实现。我们考虑由MOM和SMOM运动学定义的方案,并强调了投影仪在每个方案中选择的重要性。传统的投影仪已在文献中用于MOM运动学,它为不消失的$α= 0 $而消失的转换因子产生QCD校正,并且对晶格匹配量表产生人为依赖,该量表只在将所有扰动理论列出后才消失。这可以追溯到违反tha $α= 0 $限制的病房身份。我们展示了如何通过明智的投影仪选择来解决此问题,并证明这些方案中的威尔逊系数不含纯QCD贡献。由此产生的威尔逊系数(和操作员矩阵元素)大大降低了规模依赖性。我们选择的$ \ bar {\ rm MS} $方案是传统$ W $ - 质量方案的动机,这是一个事实,即,除了在较高订单上更加易于处理,与后者不同,它允许尺度透明的分离。我们利用这一点是为了获得重新归一化组改良的前LEAD-LOG和临时对电磁贡献的强烈校正,并研究(QED引起的)对晶格匹配量表的依赖性。

The CKM unitarity precision test of the Standard Model requires a systematic treatment of electromagnetic and strong corrections for semi-leptonic decays. Electromagnetic corrections require the renormalization of a semileptonic four-fermion operator. In this work we calculate the $\mathcal{O}(αα_s)$ perturbative scheme conversion between the $\bar{\rm MS}$ scheme and several momentum-space subtraction schemes, which can also be implemented on the lattice. We consider schemes defined by MOM and SMOM kinematics and emphasize the importance of the choice of projector for each scheme. The conventional projector, that has been used in the literature for MOM kinematics, generates QCD corrections to the conversion factor that do not vanish for $α=0$ and which generate an artificial dependence on the lattice matching scale that would only disappear after summing all orders of perturbation theory. This can be traced to the violation of a Ward identity that holds in tha $α=0$ limit. We show how to remedy this by judicious choices of projector, and prove that the Wilson coefficients in those schemes are free from pure QCD contributions. The resulting Wilson coefficients (and operator matrix elements) have greatly reduced scale dependence. Our choice of the $\bar{\rm MS}$ scheme over the traditional $W$-mass scheme is motivated by the fact that, besides being more tractable at higher orders, unlike the latter it allows for a transparent separation of scales. We exploit this to obtain renormalization-group-improved leading-log and next-to-leading-log strong corrections to the electromagnetic contributions and study the (QED-induced) dependence on the lattice matching scale.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源