论文标题
étale$(φ,γ)$ - 家庭中的模块过度关联
Overconvergence of étale $(φ,Γ)$-modules in families
论文作者
论文摘要
我们证明了Emerton,gee和Hellmann的猜想,即étale$(φ,γ)$ - 由拓扑上有限的$ \ Mathbb {z} _ {p} $ - 代数为$的家庭中的模块。结果,我们将自然图的存在从Emerton-Gee堆栈的刚性纤维中推导为$(φ,γ)$ - 模块的刚性分析堆栈。
We prove a conjecture of Emerton, Gee and Hellmann concerning the overconvergence of étale $(φ,Γ)$-modules in families parametrized by topologically finite type $\mathbb{Z}_{p}$-algebras. As a consequence, we deduce the existence of a natural map from the rigid fiber of the Emerton-Gee stack to the rigid analytic stack of $(φ,Γ)$-modules.