论文标题

纵向临床数据分析的时间模式挖掘:确定阿尔茨海默氏病的危险因素

Temporal Pattern Mining for Analysis of Longitudinal Clinical Data: Identifying Risk Factors for Alzheimer's Disease

论文作者

Spooner, Annette, Mohammadi, Gelareh, Sachdev, Perminder S., Brodaty, Henry, Sowmya, Arcot

论文摘要

提出了一个新的框架,用于处理纵向,多元,异质临床数据的建模和分析的复杂任务。该方法使用时间抽象将数据转换为更合适的形式,用于建模,时间模式挖掘,以发现复杂,纵向数据和生存分析的机器学习模型中的模式,以选择发现的模式。该方法应用于对阿尔茨海默氏病(AD)的现实研究,这是一种无法治愈的进行性神经退行性疾病。在生存分析模型中,发现的模式可预测AD的一致性指数高达0.8。这是使用AD的时间数据收集对AD数据进行生存分析的第一项工作。可视化模块还清楚地描绘了发现的模式,以易于解释。

A novel framework is proposed for handling the complex task of modelling and analysis of longitudinal, multivariate, heterogeneous clinical data. This method uses temporal abstraction to convert the data into a more appropriate form for modelling, temporal pattern mining, to discover patterns in the complex, longitudinal data and machine learning models of survival analysis to select the discovered patterns. The method is applied to a real-world study of Alzheimer's disease (AD), a progressive neurodegenerative disease that has no cure. The patterns discovered were predictive of AD in survival analysis models with a Concordance index of up to 0.8. This is the first work that performs survival analysis of AD data using temporal data collections for AD. A visualisation module also provides a clear picture of the discovered patterns for ease of interpretability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源