论文标题

$μ$ ARAE行星系统的轨道结构和稳定性

The orbital architecture and stability of the $μ$ Arae planetary system

论文作者

Goździewski, Krzysztof

论文摘要

我们重新分析了$ $ $ arae行星系统的全球轨道体系结构和动力稳定性。我们已经根据文献径向速度(RV)测量结果更新了行星最合适的元素和最小质量,现在已经跨越了15年。这是2006年用于系统首次表征的RVS间隔的两倍。它由土星和两个木星质量行星组成,在低含量的轨道上,类似于太阳能系统中的地球杂志 - jupiter构造,以及近距离温度的近距离摩托车,具有约14个地球质量。在这里,我们以最外面的时期将这种早期解决方案限制为一个月。最合适的牛顿模型的特征是最大的行星低于0.1的中等偏心率,而小不确定性〜0.02。它很接近,但与2e:1b的平均运动共振是像土星 - jupiter一样的平均运动共振,但可能接近弱的三体MMR。该系统在广泛的参数空间区域中显得严格稳定,涵盖了几个$σ$的不确定性。系统的稳定性可稳健地增加了最小质量的五倍,这与从20至90度倾斜的广泛倾斜相一致。这意味着所有行星质量都安全地低于棕色矮人的质量极限。我们发现可能系统倾斜度I 〜20-30度的统计指示较弱。鉴于良好的轨道溶液,我们还研究了假设的碎屑盘的结构,这些碎屑盘是主带和Kuiper带的类似物,并且可能自然发生在该系统中。

We re-analyze the global orbital architecture and dynamical stability of the $μ$ Arae planetary system. We have updated the best-fit elements and minimal masses of the planets based on literature radial velocity (RV) measurements, now spanning 15 years. This is twice the RVs interval used for the first characterization of the system in 2006. It consists of a Saturn- and two Jupiter-mass planets in low-eccentric orbits resembling the Earth-Mars-Jupiter configuration in the Solar system, as well as the close-in warm Neptune with a mass of ~14 Earth masses. Here, we constrain this early solution with the outermost period to be accurate to one month. The best-fit Newtonian model is characterized by moderate eccentricities of the most massive planets below 0.1 with small uncertainties ~0.02. It is close but meaningfully separated from the 2e:1b mean motion resonance of the Saturn-Jupiter-like pair, but may be close to weak three-body MMRs. The system appears rigorously stable over a wide region of parameter space covering uncertainties of several $σ$. The system stability is robust to a five-fold increase in the minimal masses, consistent with a wide range of inclinations, from 20 to 90 deg. This means that all planetary masses are safely below the brown dwarf mass limit. We found a weak statistical indication of the likely system inclination I~20-30 deg. Given the well constrained orbital solution, we also investigate the structure of hypothetical debris disks, which are analogs of the Main Belt and Kuiper Belt, and may naturally occur in this system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源