论文标题
带有奇数路径的堆叠书图的无线电数量的界限
Bounds of the Radio Number of Stacked-Book Graphs with Odd Paths
论文作者
论文摘要
从星形SM的笛卡尔产物和路径PN的笛卡尔产物获得了堆叠的书籍GM,其中M和S分别是恒星图和路径的顺序。获得图的无线电数是一个严格的过程,它取决于G的直径和非阴性整数标签的正差F(u)和f(v)分配给G的任何两个U,V中的任何两个U,V。该论文的v(g)中的v(g)中的v(g)中,该论文获得了GM的无线电数的紧密上下限制GM,n gm,n od path pn or od od od od od od od od od od od od od od od。调查了PN具有均匀订单的情况。
A Stacked-book graph Gm,n is obtained from the Cartesian product of a star graph Sm and a path Pn, where m and s are the orders of the star graph and the path respectively. Obtaining the radio number of a graph is a rigorous process, which is dependent on the diameter of G and positive difference of non-negative integer labels f(u) and f(v) assigned to any two u, v in the vertex set V (G) of G. This paper obtains tight upper and lower bounds of the radio number of Gm,n where the path Pn has an odd order. The case where Pn has an even order has been investigated.