论文标题
多压太阳风的加速度:派克太阳能探测和一维模型
Acceleration of polytropic solar wind: Parker Solar Probe observation and one-dimensional model
论文作者
论文摘要
太阳冠状血浆到超音速速度的加速度是热物理学中最根本但尚未解决的问题之一。尽管帕克在等温太阳能电晕上的开创性理论取得了成功,但观察到逼真的太阳风是非等温的,并且其温度的衰变通常可以适合多变态模型。在这项工作中,我们使用前九个相遇的Parker太阳能探针数据来估计太阳风质子的多粒子指数。估计的多粒子指数大约在1.25和1.5之间变化,并且很大程度上取决于太阳风速,平均显示较小的多粒子指数的太阳风更快。我们全面地分析了1D球面对称太阳风模型,其中包括多变量指数$γ\在[1,5/3] $中。我们为跨性别者恒星流提供了一个封闭的代数方程,即顺利地通过声点的流。我们表明,加速风解决方案仅存在于参数空间中,该空间由$ C_0/C_G <1 $和$(C_0/C_G)^2> 2> 2(γ-1)$,其中$ C_0 $和$ C_G $是表面音速和一半是星星的逃生速度的一半,而没有符合Stellar Wind的风速,而没有$γ> 3/2 $ 2 $ 2 $ 3/2 $ 2 $ 2 $ 2 $ 2 $ 2 $ 2/2 $ 2> 3/2/2 $ 2> 3/2/2 $ 2> 3/2/2/2 $ 2。在逼真的太阳冠状温度下,观察到的带有$γ\ gtrsim 1.25 $的太阳风无法通过简单的多环境模型来解释。我们表明,诸如下电晕中强加热之类的机制导致太阳周围的较厚的等温层和大振幅Alfvén波压力是为了去除$γ$中的约束,并将太阳风加速到高速。
The acceleration of the solar coronal plasma to supersonic speeds is one of the most fundamental yet unresolved problem in heliophysics. Despite the success of Parker's pioneering theory on an isothermal solar corona, the realistic solar wind is observed to be non-isothermal, and the decay of its temperature with radial distance usually can be fitted to a polytropic model. In this work, we use Parker Solar Probe data from the first nine encounters to estimate the polytropic index of solar wind protons. The estimated polytropic index varies roughly between 1.25 and 1.5 and depends strongly on solar wind speed, faster solar wind on average displaying a smaller polytropic index. We comprehensively analyze the 1D spherically symmetric solar wind model with polytropic index $γ\in [1,5/3]$. We derive a closed algebraic equation set for transonic stellar flows, i.e. flows that pass the sound point smoothly. We show that an accelerating wind solution only exists in the parameter space bounded by $C_0/C_g < 1$ and $(C_0/C_g)^2 > 2(γ-1)$ where $C_0$ and $C_g$ are the surface sound speed and one half of the escape velocity of the star, and no stellar wind exists for $γ> 3/2$. With realistic solar coronal temperatures, the observed solar wind with $γ\gtrsim 1.25$ cannot be explained by the simple polytropic model. We show that mechanisms such as strong heating in the lower corona that leads to a thick isothermal layer around the Sun and large-amplitude Alfvén wave pressure are necessary to remove the constraint in $γ$ and accelerate the solar wind to high speeds.