论文标题
在原月经磁盘中发现线压力扩大和直接限制气体表面密度的限制
Discovery of Line Pressure Broadening and Direct Constraint on Gas Surface Density in a Protoplanetary Disk
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The gas surface density profile of protoplanetary disks is one of the most fundamental physical properties to understand planet formation. However, it is challenging to determine the surface density profile observationally, because the H$_2$ emission cannot be observed in low-temperature regions. We analyzed the Atacama Large Millimeter/submillimeter Array (ALMA) archival data of the \co line toward the protoplanetary disk around TW Hya and discovered extremely broad line wings due to the pressure broadening. In conjunction with a previously reported optically thin CO isotopologue line, the pressure broadened line wings enabled us to directly determine the midplane gas density for the first time. The gas surface density at $\sim5$ au from the central star reaches $\sim 10^3\ {\rm g\ cm^{-2}}$, which suggests that the inner region of the disk has enough mass to form a Jupiter-mass planet. Additionally, the gas surface density drops at the inner cavity by $\sim2$ orders of magnitude compared to outside the cavity. We also found a low CO abundance of $\sim 10^{-6}$ with respect to H$_2$, even inside the CO snowline, which suggests conversion of CO to less volatile species. Combining our results with previous studies, the gas surface density jumps at $r\sim 20$ au, suggesting that the inner region ($3<r<20$ au) might be the magnetorotational instability dead zone. This study sheds light on direct gas-surface-density constraint without assuming the CO/H$_2$ ratio using ALMA.