论文标题

Reactmine:一种用于从时间序列数据推断化学反应的统计搜索算法

Reactmine: a statistical search algorithm for inferring chemical reactions from time series data

论文作者

Martinelli, Julien, Grignard, Jeremy, Soliman, Sylvain, Ballesta, Annabelle, Fages, François

论文摘要

从浓度时间序列中推断化学反应网络(CRN)是一个挑战,因为在细胞水平上的定量时间数据的可用性日益增长。这激发了算法的特征,以推断出在生化过程中观察到的INA的分子物种之间的主要反应,并构建CRN结构和动力学模型。现有的基于ODE的倾向方法,例如Sindy Resort至少正方形回归,结合了稀疏性 - 增强型苯甲酸化,例如Lasso。但是,我们观察到这些方法无法学习稀疏的模型,输入时间序列仅在野生型条件下可用,即,在初始条件下没有可能与零的组合的可能性。我们提出了一种CRN推理算法,该算法通过在边界范围内的搜索树中以顺序的方式推断反应来实现稀疏性,并根据其动力学在其支持的过渡中的变化,将CRN候选者的动力学参数重新降低的,在最终的passe cont-pass上对其依据的过渡和重新挑选的动力学参数进行排名。我们表明,反应是通过检索sindy失败的模拟数据在模拟数据上取得的成功分析。该代码可与Athttps://gitlab.inria.fr/julmarti/crninf/一起提供,并与入门笔记本电脑一起使用。

Inferring chemical reaction networks (CRN) from concentration time series is a challenge encouragedby the growing availability of quantitative temporal data at the cellular level. This motivates thedesign of algorithms to infer the preponderant reactions between the molecular species observed ina given biochemical process, and build CRN structure and kinetics models. Existing ODE-basedinference methods such as SINDy resort to least square regression combined with sparsity-enforcingpenalization, such as Lasso. However, we observe that these methods fail to learn sparse modelswhen the input time series are only available in wild type conditions, i.e. without the possibility toplay with combinations of zeroes in the initial conditions. We present a CRN inference algorithmwhich enforces sparsity by inferring reactions in a sequential fashion within a search tree of boundeddepth, ranking the inferred reaction candidates according to the variance of their kinetics on theirsupporting transitions, and re-optimizing the kinetic parameters of the CRN candidates on the wholetrace in a final pass. We show that Reactmine succeeds both on simulation data by retrievinghidden CRNs where SINDy fails, and on two real datasets, one of fluorescence videomicroscopyof cell cycle and circadian clock markers, the other one of biomedical measurements of systemiccircadian biomarkers possibly acting on clock gene expression in peripheral organs, by inferringpreponderant regulations in agreement with previous model-based analyses. The code is available athttps://gitlab.inria.fr/julmarti/crninf/ together with introductory notebooks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源