论文标题

量子黑洞,整数的分区和自相似性

Quantum black holes, partition of integers and self-similarity

论文作者

Castorina, Paolo, Iorio, Alfredo, Smaldone, Luca

论文摘要

我们认为,量化了黑洞事件范围的面积,$ a = l_p^2 \,(4 \ ln 2)\,n $,相关的自由度在数量和费米金性质上都是有限的。然后,我们研究熵的一般方面,$ s_ {bh} $,我们的主要重点是黑洞自​​相似性。我们首先在黑洞的配置和整数$ n $的有序分区之间找到一对一的地图。因此,我们是从那里构建的,在制造整个配置空间的子零件之间。这对黑洞的自相似性具有意义,这完全在一个描述中,这是一种源于$ n $的有序分区的自相似性所引起的现象。最后,我们将上述内容与跨标(量子)校正的众所周知的结果进行了比较,这些结果必定需要不同的(量子)统计权重以进行各种配置。

We take the view that the area of a black hole's event horizon is quantized, $A = l_P^2 \, (4 \ln 2) \, N$, and the associated degrees of freedom are finite in number and of fermionic nature. We then investigate general aspects of the entropy, $S_{BH}$, our main focus being black-hole self-similarity. We first find a two-to-one map between the black hole's configurations and the ordered partitions of the integer $N$. Hence we construct from there a composition law between the sub-parts making the whole configuration space. This gives meaning to black hole self-similarity, entirely within a single description, as a phenomenon stemming from the well known self-similarity of the ordered partitions of $N$. Finally, we compare the above to the well-known results on the subleading (quantum) corrections, that necessarily require different (quantum) statistical weights for the various configurations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源