论文标题

Mazur的等级定理

Mazur's isogeny theorem

论文作者

Michaud-Jacobs, Philippe

论文摘要

Mazur的同根定理指出,如果$ p $是椭圆曲线$ e / \ mathbb {q} $的主要水平,则承认合理的$ p $ $ p $的同学,然后是$ p \ in \ in \ in \ in \ {2,3,5,1113,13,13,17,17,17,17,19,19,19,37,437,437,437,437,437,16333 c。该结果是椭圆曲线理论的基石之一,在Fermat的最后定理证明中起着至关重要的作用。在这篇说明性论文中,我们概述了Mazur对该定理的证明,其中模块化曲线和GALOIS表示突出。

Mazur's isogeny theorem states that if $p$ is a prime for which there exists an elliptic curve $E / \mathbb{Q}$ that admits a rational isogeny of degree $p$, then $p \in \{2,3,5,7,11,13,17,19,37,43,67,163 \}$. This result is one of the cornerstones of the theory of elliptic curves and plays a crucial role in the proof of Fermat's Last Theorem. In this expository paper, we overview Mazur's proof of this theorem, in which modular curves and Galois representations feature prominently.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源