论文标题
Integrodifference方程的数值动力学:$ C^α(ω)$中的周期性解决方案和不变歧管
Numerical dynamics of integrodifference equations: Periodic solutions and invariant manifolds in $C^α(Ω)$
论文作者
论文摘要
集成差方程是理论生态学中的多功能模型,用于非重叠世代发展的物种的空间分散。这些无限维离散动力系统的动力学通常使用计算模拟说明。本文研究了NyStröm离散化对具有Hölder连续函数在紧凑型域作为状态空间的周期性集成方程的局部动力学的影响。我们证明双曲线周期性解决方案及其相关的稳定且不稳定的流形,符合正交/立方体方法的收敛顺序。
Integrodifference equations are versatile models in theoretical ecology for the spatial dispersal of species evolving in non-overlapping generations. The dynamics of these infinite-dimensional discrete dynamical systems is often illustrated using computational simulations. This paper studies the effect of Nyström discretization to the local dynamics of periodic integrodifference equations with Hölder continuous functions over a compact domain as state space. We prove persistence and convergence for hyperbolic periodic solutions and their associated stable and unstable manifolds respecting the convergence order of the quadrature/cubature method.