论文标题
通过图分层不可值得不可还原的接触曲线
Irreducible Contact Curves via Graph Stratification
论文作者
论文摘要
我们证明,触点稳定地图的模量空间均为$ \ mathbb {p}^{2n+1} $ $ d $ $ d $的$允许通过图参数进行分层。我们使用它来确定$ \ Mathbb {p}^{2n+1} $在任何Schubert条件下的不可约合理性接触曲线的数量。我们明确给出其中一些不变性的,以$ \ mathbb {p}^{3} $和$ \ mathbb {p}^{5} $。我们给出了$ \ mathbb {p}^{3} $符合适当数量的线的平面触点曲线数量的公式的另一个证明。
We prove that the moduli space of contact stable maps to $\mathbb{P}^{2n+1}$ of degree $d$ admits a stratification parameterized by graphs. We use it to determine the number of irreducible rational contact curves in $\mathbb{P}^{2n+1}$ with any Schubert condition. We give explicitely some of these invariants for $\mathbb{P}^{3}$ and $\mathbb{P}^{5}$. We give another proof of the formula for the number of plane contact curves in $\mathbb{P}^{3}$ meeting the appropriate number of lines.