论文标题

使用索赔数据,用于动态预测慢性肾脏病患者肾脏替代疗法的发作

Machine learning for dynamically predicting the onset of renal replacement therapy in chronic kidney disease patients using claims data

论文作者

Lopez-Martinez, Daniel, Chen, Christina, Chen, Ming-Jun

论文摘要

慢性肾脏疾病(CKD)是一种缓慢进行的疾病,最终可能需要肾脏替代疗法(RRT),包括透析或肾移植。例如,对需要RRT的患者(提前1年)的早期鉴定可以改善患者的预后,例如,通过允许更高质量的透析血管通道。因此,护理团队对RRT的需求的早期认识是成功管理该疾病的关键。不幸的是,目前没有常用的RRT启动预测工具。在这项工作中,我们提出了一种机器学习模型,该模型可以动态地识别有可能需要RRT的CKD患者,只需使用索赔数据即可提前一年。为了评估该模型,我们研究了大约300万Medicare受益人,我们做出了超过800万个预测。我们表明,该模型可以识别出超过90%敏感性和特异性的风险患者。尽管在准备临床使用之前需要进行其他工作,但本研究为筛查工具提供了基础,以在时间窗口内识别有风险的患者,以实现旨在改善RRT结果的早期主动干预措施。

Chronic kidney disease (CKD) represents a slowly progressive disorder that can eventually require renal replacement therapy (RRT) including dialysis or renal transplantation. Early identification of patients who will require RRT (as much as 1 year in advance) improves patient outcomes, for example by allowing higher-quality vascular access for dialysis. Therefore, early recognition of the need for RRT by care teams is key to successfully managing the disease. Unfortunately, there is currently no commonly used predictive tool for RRT initiation. In this work, we present a machine learning model that dynamically identifies CKD patients at risk of requiring RRT up to one year in advance using only claims data. To evaluate the model, we studied approximately 3 million Medicare beneficiaries for which we made over 8 million predictions. We showed that the model can identify at risk patients with over 90% sensitivity and specificity. Although additional work is required before this approach is ready for clinical use, this study provides a basis for a screening tool to identify patients at risk within a time window that enables early proactive interventions intended to improve RRT outcomes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源