论文标题
古典和量子物理的上下文统一
Contextual unification of classical and quantum physics
论文作者
论文摘要
在约翰·冯·诺伊曼(John von Neumann)关于无限张量产品的一篇文章之后,我们提出了这样一种观念,即量子力学的通常形式主义与单一的表示形式相关,在遇到可数的粒子(或自由度)时停止工作。这是因为相应的希尔伯特空间的维度变得无限无限,导致单一等价的丧失和部门化。通过从物理上解释这一数学事实,我们表明它提供了一种自然的方式来描述“海森伯格剪切”,以及一个统一的数学模型,包括量子和经典物理,在自然描述中显示出必需的不可谴责的方面。
Following an article by John von Neumann on infinite tensor products, we develop the idea that the usual formalism of quantum mechanics, associated with unitary equivalence of representations, stops working when countable infinities of particles (or degrees of freedom) are encountered. This is because the dimension of the corresponding Hilbert space becomes uncountably infinite, leading to the loss of unitary equivalence, and to sectorization. By interpreting physically this mathematical fact, we show that it provides a natural way to describe the "Heisenberg cut", as well as a unified mathematical model including both quantum and classical physics, appearing as required incommensurable facets in the description of nature.