论文标题
广义雅各布猜想的证明
A proof of the Generalized Jacobian conjecture
论文作者
论文摘要
基于降低多项式映射的学位和代数几何学的一些已知结果,通过引入Brouwer学位,这是一种来自差异拓扑,代数拓扑和代数几何的工具,我们完全证明了广义的Jacobian Jacobian Jacobian构想,这暗示了实际数字,这意味着实数,概括了jacob indived jacob intection jacob noctien jacob nodient in Intedure。同样,对于强烈的雅各布猜想,我们提出了新的足够和必要的条件。
Based on the reduction of degree in polynomial mappings and some known results in algebraic geometry, by introducing the Brouwer degree, a tool from differential topology, algebraic topology and algebraic geometry, we completely prove the Generalized Jacobian conjecture in the field of real numbers, which implies the Generalized complex Jacobian conjecture. Also, for the strong real Jacobian conjecture, we present a newly sufficient and necessary condition.