论文标题
修饰重力中带电的动力耗散圆柱结构的复杂性分析
Complexity Analysis of Charged Dynamical Dissipative Cylindrical Structure in Modified Gravity
论文作者
论文摘要
本文着重于某些标量因子的制定,这些因子是根据标准重力模型$ \ MATHCAL {r}+φ\ MATHCAL {Q} $的物质变量表示唯一表达的($ \ MATHCAL {R}+φ\ MATHCAL {Q} $ $ \ MATHCAL {Q} = \ MATHCAL {R} _ {φ\ VARTHETA} \ MATHCAL {T}^{φ\ VARTHETA} $),通过正交分解Riemann Tensor来计算四个标量。我们发现,只有$ \ Mathcal {y} _ {tf} $涉及不均匀的能量密度,热通量,电荷和压力各向异性以及修改后的校正,因此称其为被考虑分布的复杂性因子。讨论了两种进化模式以研究圆柱体的动力学。然后,我们使用$ \ mathcal {y} _ {tf} = 0 $进行同源条件,以在没有散热的情况下计算未知的度量电位。在整个演化过程中,还可以通过应用一些约束来检查以后条件的稳定性标准。我们得出的结论是,电荷和修改理论的影响产生了更复杂的系统。
This article focuses on the formulation of some scalar factors which are uniquely expressed in terms of matter variables for dynamical charged dissipative cylindrical geometry in a standard gravity model $\mathcal{R}+Φ\mathcal{Q}$ ($Φ$ is the coupling parameter, $\mathcal{Q}=\mathcal{R}_{φ\vartheta}\mathcal{T}^{φ\vartheta}$) and calculates four scalars by orthogonally decomposing the Riemann tensor. We find that only $\mathcal{Y}_{TF}$ involves inhomogeneous energy density, heat flux, charge and pressure anisotropy coupled with modified corrections, and thus call it as complexity factor for the considered distribution. Two evolutionary modes are discussed to study the dynamics of cylinder. We then take the homologous condition with $\mathcal{Y}_{TF}=0$ to calculate unknown metric potentials in the absence as well as presence of heat dissipation. The stability criterion of the later condition is also checked throughout the evolution by applying some constraints. We conclude that the effects of charge and modified theory yield more complex system.