论文标题

天气驱动的灵活性储备采购:NYISO海上风力案例研究

Weather-Driven Flexibility Reserve Procurement: A NYISO Offshore Wind Power Case Study

论文作者

Liang, Zhirui, Mieth, Robert, Dvorkin, Yury, Ortega-Vazquez, Miguel A.

论文摘要

可变可再生能源(VRE)的渗透不断增长,需要额外的灵活性储备,以确保可靠的电源系统操作。当前的行业实践通常将VRE功率生产预测的一定一部分视为灵活性储备,因此忽略了其他相关信息,例如天气状况。为了解决这个问题,已经提出了基于概率和风险的储备尺寸模型,该模型使用概率的VRES Power预测,这些预测主要依赖于历史预测和实际VRES功率数据进行模型培训。因此,这些方法不适用于计划或新安装的风电场,那里没有或不足的历史数据。本文解决了此警告。首先,我们建议使用公开可用的天气数据来安装风能安装的天气驱动概率预测方法。其次,我们将最终的概率预测应用于一种新型的基于风险的灵活性储备尺寸模型,该模型与当前使用的ISOS使用的储备金管道兼容。最后,我们将基于风险的储备要求与行业实践,最先进的储备采购方法以及有关系统成本和安全性的天气信号基准进行了比较。我们的结果来自于1819年的Bus Nyiso系统模型的现实世界数据,该模型既有在近海风力发电设施,又强调了天气信息的有用性预测,并证明了风险感知储备的效率提高。

The growing penetration of variable renewable energy sources (VRES) requires additional flexibility reserve to ensure reliable power system operations. Current industry practice typically assumes a certain fraction of the VRES power production forecast as flexibility reserve, thus ignoring other relevant information, such as weather conditions. To address this, probability- and risk-based reserve sizing models have been proposed, which use probabilistic VRES power forecasts that mostly rely on historical forecast and actual VRES power data for model training. Hence, these approaches are not suitable for planned or newly installed wind farms, where no or insufficient historical data is available. This paper addresses this caveat. First, we propose a weather-driven probabilistic forecasting method for wind power installations using publicly available weather data. Second, we apply the resulting probabilistic forecasts to a novel risk-based flexibility reserve sizing model that is compatible with the current reserve procuring pipeline used by US ISOs. Finally, we compare the risk-based reserve requirements to industry practice, state-of-the-art reserve procurement methods, and a weather-ignorant benchmark with respect to system cost and security. Our results are obtained from real-world data on a 1819-bus NYISO system model with both on- and projected off-shore wind power installations, which highlight the usefulness of weather information wind power forecasting and demonstrate efficiency gains from risk-aware reserve procurement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源