论文标题

Bismut-Cheeger ETA表格及其应用的扩展变异公式

An extended variational formula for the Bismut-Cheeger eta form and its applications

论文作者

Ho, Man-Ho

论文摘要

本文的目的是通过允许旋转$^c $ dirac运算符被同构式矢量捆绑扭曲,并建立$ \ \ m i \ mathbb {z Z} _2 $ graded Additivity of Bissut-Cheegaut-Cheegaut-Cheegegaut-Cheegegaegega,则本文的目的是扩展我们先前在bismut-cheeger eta形式的变化公式的工作,而无需内核捆绑。使用这些结果,我们提供了替代证明,即差异$ k $ - 理论中的分析指数是一个定义明确的组同态,而Riemann-Roch-roch-grothendieck Theorem in $ \ Mathbb {r}/\ Mathbb {z}} $ k $ k $ - theore。

The purpose of this paper is to extend our previous work on the variational formula for the Bismut-Cheeger eta form without the kernel bundle assumption by allowing the spin$^c$ Dirac operators to be twisted by isomorphic vector bundles, and to establish the $\mathbb{Z}_2$-graded additivity of the Bismut-Cheeger eta form. Using these results, we give alternative proofs of the fact that the analytic index in differential $K$-theory is a well defined group homomorphism, and the Riemann-Roch-Grothendieck theorem in $\mathbb{R}/\mathbb{Z}$ $K$-theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源