论文标题
Tokencut:用自我监督的变压器和标准化剪切的图像和视频中的对象进行分割
TokenCut: Segmenting Objects in Images and Videos with Self-supervised Transformer and Normalized Cut
论文作者
论文摘要
在本文中,我们描述了一种基于图的算法,该算法使用自我监管的变压器获得的功能来检测图像和视频中的显着对象。使用这种方法,将构成图像或视频的图像贴片组织成一个完全连接的图,其中每对贴片之间的边缘使用变压器学到的功能在补丁之间标记了相似的分数。然后将显着物体的检测和分割作为图形问题配制,并使用经典的归一化切割算法解决。尽管这种方法很简单,但它还是在几个常见的图像和视频检测和分割任务上实现了最新的结果。对于无监督的对象发现,当使用VOC07,VOC12和COCO20K数据集进行测试时,这种方法的优于竞争方法的差距分别为6.1%,5.7%和2.6%。对于图像中无监督的显着性检测任务,此方法将联合(IOU)的交叉分数提高了4.4%,5.6%和5.2%。与当前的最新技术相比,使用ECSD,DUTS和DUT-OMRON数据集进行测试时。此方法还通过戴维斯,SEGTV2和FBMS数据集实现了无监督视频对象分割任务的竞争结果。
In this paper, we describe a graph-based algorithm that uses the features obtained by a self-supervised transformer to detect and segment salient objects in images and videos. With this approach, the image patches that compose an image or video are organised into a fully connected graph, where the edge between each pair of patches is labeled with a similarity score between patches using features learned by the transformer. Detection and segmentation of salient objects is then formulated as a graph-cut problem and solved using the classical Normalized Cut algorithm. Despite the simplicity of this approach, it achieves state-of-the-art results on several common image and video detection and segmentation tasks. For unsupervised object discovery, this approach outperforms the competing approaches by a margin of 6.1%, 5.7%, and 2.6%, respectively, when tested with the VOC07, VOC12, and COCO20K datasets. For the unsupervised saliency detection task in images, this method improves the score for Intersection over Union (IoU) by 4.4%, 5.6% and 5.2%. When tested with the ECSSD, DUTS, and DUT-OMRON datasets, respectively, compared to current state-of-the-art techniques. This method also achieves competitive results for unsupervised video object segmentation tasks with the DAVIS, SegTV2, and FBMS datasets.