论文标题

可转移的多级模型,具有锂离子电池健康估算状态的循环差异学习

A Transferable Multi-stage Model with Cycling Discrepancy Learning for Lithium-ion Battery State of Health Estimation

论文作者

Qin, Yan, Yuen, Chau, Yin, Xunyuan, Huang, Biao

论文摘要

作为有关健康状况的重要组成部分,数据驱动的先进健康(SOH)估计已成为锂离子电池(LIBS)的主导地位。为了处理跨电池的数据差异,当前的SOH估计模型参与转移学习(TL),该模型保留通过重复使用离线训练模型的部分结构而获得的APRIORII知识。但是,电池完整生命周期的多种降解模式使追求TL的挑战。引入了阶段的概念来描述呈现出类似降解模式的连续周期的收集。提出了一个可转移的多级SOH估计模型,以在同一阶段跨电池执行TL,由四个步骤组成。首先,有了确定的阶段信息,将来自源电池的原始循环数据重建到具有高尺寸的相空间中,从而探索了具有有限传感器的隐藏动力学。接下来,在每个阶段跨周期的域不变表示是通过与重建数据的循环差异子空间提出的。第三,考虑到不同阶段之间不平衡的放电循环,提出了一个由长期短期存储网络的轻量级模型组成的切换估计策略,并提出了一个具有拟议时间胶囊网络的强大模型,以提高估计精度。最后,当目标电池的循环一致性漂移时,更新方案会弥补估计错误。提出的方法在各种传输任务中的竞争算法优于其竞争算法,用于带有三个电池的运营基准测试。

As a significant ingredient regarding health status, data-driven state-of-health (SOH) estimation has become dominant for lithium-ion batteries (LiBs). To handle data discrepancy across batteries, current SOH estimation models engage in transfer learning (TL), which reserves apriori knowledge gained through reusing partial structures of the offline trained model. However, multiple degradation patterns of a complete life cycle of a battery make it challenging to pursue TL. The concept of the stage is introduced to describe the collection of continuous cycles that present a similar degradation pattern. A transferable multi-stage SOH estimation model is proposed to perform TL across batteries in the same stage, consisting of four steps. First, with identified stage information, raw cycling data from the source battery are reconstructed into the phase space with high dimensions, exploring hidden dynamics with limited sensors. Next, domain invariant representation across cycles in each stage is proposed through cycling discrepancy subspace with reconstructed data. Third, considering the unbalanced discharge cycles among different stages, a switching estimation strategy composed of a lightweight model with the long short-term memory network and a powerful model with the proposed temporal capsule network is proposed to boost estimation accuracy. Lastly, an updating scheme compensates for estimation errors when the cycling consistency of target batteries drifts. The proposed method outperforms its competitive algorithms in various transfer tasks for a run-to-failure benchmark with three batteries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源